25/09/2019
Automática e Instrumentación
"Estudio sobre Mantenimiento Predictivo en la Industria 4.0", de Fujitsu.
El 62,5% de las empresas recomienda implementar el mantenimiento predictivo para ser competitivas
En la industria se estima que la identificación temprana y la solución a problemas antes de que ocurran pueden suponer un ahorro de hasta un 40% en los costes de mantenimiento. En la industria se estima que la identificación temprana y la solución a problemas antes de que ocurran pueden suponer un ahorro de hasta un 40% en los costes de mantenimiento.
La industria española es consciente de la importancia de implantar proyectos de mantenimiento predictivo, para anticiparse a posibles incidencias o errores activos y mejorar los procesos de producción, a través de diferentes tecnologías como son IoT, IA y la analítica avanzada. Así lo destaca el "Estudio sobre Mantenimiento Predictivo en la Industria 4.0", presentado ayer por Fujitsu.

En la industria se estima que la identificación temprana y la solución a problemas antes de que ocurran pueden suponer un ahorro de hasta un 40% en los costes de mantenimiento. Predecir y prevenir fallos o paradas en la infraestructura, controlar los activos o el equipamiento de manera temprana, no sólo asegura una intervención inmediata con la consiguiente reducción de costes, sino que también genera una mayor eficiencia en el negocio de las empresas. Aumentando la productividad de las líneas, optimizando stock, reduciendo el coste de oportunidad, por la no producción y disminuyendo el error humano.

Baja inversión

"Es importante señalar que el mantenimiento predictivo es valorado como una de las grandes palancas de la digitalización", explican los autores del informe. Sin embargo, el estudio desvela que, al tener muchos años, las empresas en nuestro país, les cuesta decidirse a invertir en estos activos, por su maquinaria ya que carecen de procesos de sensorización o porque no guardan sus datos, entre otros aspectos. De ahí, que tan solo el 35% de la muestra afirme que invierte en nuevas tecnologías. Las cuales se dividen en IoT un 21%, análisis de datos 21% e inteligencia artificial un 12%, quedando en un segundo plano.

El principal motivo de la inversión es optimizar la productividad, pero dejan ver las barreras para lograr la implantación del mantenimiento predictivo como son: el alto grado de inversión, falta de justificación o claro retorno del ROI, así como técnicas. Aunque pese a ellas, el 62,5% recomienda implementar el mantenimiento predictivo para conseguir la competitividad.

"Para llegar al Smart Factory se debe entender la transformación digital desde un punto de vista de negocio. Optimizar los stocks y las líneas de producción, alargar la vida útil de la maquinaria y poder hacer un mantenimiento inteligente y programado", destacan desde Fujitsu.

Objetivos del estudio

Tres han sido los objetivos a conseguir en este estudio. Primero, conocer el nivel en el que se encuentran las empresas del sector industrial español. Segundo, exponer los aspectos a tener en cuenta antes, durante y después de abordar un proyecto de mantenimiento predictivo y tercero, compartir las experiencias.

Características del estudio

En su desarrollo, realizado del 11 de febrero al 2 de junio de este año, la metodología empleada se ha estructurado en una ficha técnica de ámbito nacional, para contactos tanto clientes de Fujitsu como miembros del Observatorio de la Industria 4.0. Por sectores, la automoción y equipos industriales (17,5%) es el más representado; seguido de la industria química (15%), gran consumo alimentacion (5%), industria auxiliar (5%) y transporte y logística (5%); industria siderúrgica (2,5%) y gran consumo - droguería y perfumería (2,5%). El resto de sectores supone un 47,5%.

En cuanto a su tamaño, en un 57% tienen más de 1.000 empleados. El 28% menos de 500 y el 15% restante entre 500 y 1.000. A todo ello, sumar su facturación. En un 55% de los casos facturan más de 100 millones de euros, el 23% sobre unos 10 millones de euros, y el 17% y el 5% restante de 10 a 50 millones y de 51 a 100, respectivamente.

En relación a los perfiles de las personas consultadas, van desde el director del Comité de Dirección hasta el responsable de Ingeniería Industrial, pasando por la Dirección General, director de Proyectos o de Sistemas, entre otros. El 83% afirma tener activos críticos en sus plantas de producción. De ahí, que el control realizado se hace en un 43% de forma periódica, el 27% en tiempo real y solo el 11% controla sus activos de manera predictiva. Lo cual supone que el 38% de las empresas dedican hasta un 25% del tiempo de sus operarios de planta al mantenimiento y el 18% llegan a emplear hasta la mitad de su horario en estas tareas.

En consecuencia, la inversión desarrollada en mantenimiento predictivo se realiza tan solo en el 27% de las empresas, y eso si llevan tiempo haciéndolo. El 48% de forma reciente. Y del 24% sólo el 6% afirman no tener intención de invertir a corto plazo.

Nuevas tecnologías

La aplicación de las nuevas tecnologías en el mantenimiento predictivo es actualmente del 35% en las empresas industriales españolas. Un 10% indica que ya están empezando a aplicar las nuevas tecnologías en sus procesos de mantenimiento y que llevan algún tiempo haciéndolo. El 28% lo aplicarán a corto plazo y tan solo un 10%, afirman no aplicarlo en un futuro.

Sensorización y análisis de datos

La sensorización de las fábricas pasa por la integración de los dispositivos con los activos y procesos de las líneas de producción, por lo que contar con una sensorización es fundamental a la hora de abordar un proyecto de mantenimiento predictivo. La mayor parte de la muestra afirma contar con este elemento. De hecho, más de la mitad señala que sus activos más críticos están sensorizados con dispositivos de IoT y el 27,6% dice tener la mayoría de sus activos y procesos sensorizados. Sin embargo, tan solo el 10% habla de una sensorizacion total y el otro 10% restante carece de este elemento.

Por otro lado, sólo un 21% afirma tener un histórico de datos como: el historial de paradas, variables como clima, o los recogidos por sus dispositivos, etc... y por ello, están lejos de aplicar técnicas de análisis sobre ellos. El 30% lo tienen almacenado y accesibles. Pero por norma general, el 36,36% dice que los ha recogido de manera puntual. Y lo más sorprendente, solo el 12% no lo hace.

Elementos motivadores y barreras para invertir en el mantenimiento predictivo

Pese a que tiene múltiples beneficios, para las empresas consultadas los principales motivos que llevan al desarrollo de proyectos de mantenimiento predictivo son: el incremento de productividad, la reducción de costes asociados a un fallo o parada, así como evitar costes añadidos por la no producción. Todos ellos obtienen una puntuación de 3,9 sobre 5. Aunque también se resalta, la importancia de lograr una mejor planificación de las líneas de producción.

En cuanto a las barreras, las principales que se destacan son las técnicas como la falta de sensorización, el bajo grado de madurez de las tecnologías necesarias y todo esto lo ven reflejado como unos elementos que afectan a la seguridad, ciberseguridad, normativa vigente o la propia madurez de los activos actuales. También hay un carácter cultural y estratégico basado en la reticencia ante una falta de retorno claro de la inversión o aversión al riesgo.

Más noticias sobre mantenimiento predictivo
COMPARTIR
 
Advanced Factories 2020 | Descubre la nueva visión para la industria

Te invitamos a descubrir la nueva visión para la industria en AF2020

Consigue tu Business Pass gratuito utilizando el código

Q6ATU

Logo Expositor

Del 3 al 5 de marzo, te esperamos en Advanced Factories, la cita imprescindible para los profesionales de la industria, en la que descubrir las últimas novedades para la transformación digital del sector y la industria 4.0

Regístrate aquí

Más de 360 soluciones para tu planta de producción te esperan en el mayor evento de innovación industrial de la península

Logo empresa

Visítanos en el stand G701

 

¿Qué incluye tu Business Pass?

  • Acceso a la zona expositiva del 3 al 5 de marzo

  • App del evento

  • Factory Innovation Theatre

  • Industry Start-up Forum

  • Welcome Party

 

 

OPINE SOBRE ESTA NOTICIA
* Campos obligatorios
Automática e Instrumentación le anima a comentar los artículos publicados al tiempo que le solicita hacerlo con ánimo constructivo y desde el sentido común, por lo que se reserva el derecho de no publicar los comentarios que considere inapropiados, que contengan insultos y/o difamaciones.
Actualidad
Imagen de Hannover Messe 2019.
Imagen de Hannover Messe 2019.Deutsche Messe.
El miércoles Deutsche Messe AG, la compañía operadora del recinto ferial de Hannover, anunciaba que seguía con atención...
Deutsche Messe AG confirma que por el momento no valoran posponer la edición de este año de Hannover Messe.
Deutsche Messe AG confirma que por el momento no valoran posponer la edición de este año de Hannover Messe.Deutsche Messe.
Todo sigue según lo previsto. Deutsche Messe AG, la compañía operadora del recinto ferial de Hannover, lanzó ayer...
Tanja Krüger, CEO de la empresa Resolto by Festo, participó en el Industry 4.0 Congress de 2019.
Tanja Krüger, CEO de la empresa Resolto by Festo, participó en el Industry 4.0 Congress de 2019.Advanced Factories.
La apuesta de Advanced Factories por dar visibilidad a las mujeres en el ámbito tecnológico continúa. En la edición de...
Sistema de inspección de calidad 3DVM.
Sistema de inspección de calidad 3DVM.ABB.
ABB estará presente en la próxima edición de Advanced Factories (Stand C313), que tendrá lugar del 3 al 5 de marzo en...
El UR16e es el cobot más potente de la firma danesa, capaz de trabajar con una carga útil de 16 kg en un espacio reducido.
El UR16e es el cobot más potente de la firma danesa, capaz de trabajar con una carga útil de 16 kg en un espacio reducido.Universal Robots.
Universal Robots mostrará en Advanced Factories, del 3 al 5 de marzo en el CCIB de Barcelona, su modelo UR16e, al...
InPicker Mobile es un sistema de robótica guiada por visión (VGR) para aplicaciones de bin picking embarcado en un robot móvil autónomo.
InPicker Mobile es un sistema de robótica guiada por visión (VGR) para aplicaciones de bin picking embarcado en un robot móvil autónomo.Infaimon.
Advanced Factories es el escenario escogido por Infaimon para presentar InPicker Mobile, el primer sistema de bin...
Keyence, marca japonesa de la que Bitmakers es distribuidor exclusivo en España, ha lanzado al mercado Multispectrum, el anillo de iluminación universal, para resolver cualquier aplicación “Iluminación todo en uno”.
Keyence, marca japonesa de la que Bitmakers es distribuidor exclusivo en España, ha lanzado al mercado Multispectrum, el anillo de iluminación universal, para resolver cualquier aplicación “Iluminación todo en uno”.Bitmakers.
Bitmakers mostrará en su stand de Advanced Factories, del 3 al 5 de marzo en el CCIB de Barcelona, la evolución de sus...
La nueva cadena portacables E4Q, cuyos travesaños pueden abrirse y cerrarse rápidamente sin necesidad de herramientas, será una de las novedades de su stand.
La nueva cadena portacables E4Q, cuyos travesaños pueden abrirse y cerrarse rápidamente sin necesidad de herramientas, será una de las novedades de su stand.igus.
En Advanced Factories, que se celebra del 3 al 5 de marzo en el CCIB de Barcelona, la compañía igus explicará cómo los...
Twitter
LinkedIn
Suscríbete a nuestro canal de YouTube
Empresas destacadas
LA REVISTA Y EL BOLETÍN A UN SOLO CLIC
Boletín
Lea gratis la revista y reciba toda la actualidad del sector a través de nuestro boletín.

Esta web utiliza 'cookies' propias y de terceros para ofrecerte una mejor experiencia y servicio Más información
Versys Ediciones Técnicas © Copyright 2019 - automaticaeinstrumentacion.com | Todos los derechos reservados | Aviso Legal | Política de privacidad | Política de Cookies | Mapa web