X
18/03/2020
Automática e Instrumentación
Sus futuras aplicaciones parecen no tener límites
El talento humano, clave en el desarrollo de la Inteligencia Artificial
Mantenimiento 'just-in-time', eliminación de paradas no programas y defectos de fabricación, son algunas de las aplicaciones de la IA. Mantenimiento 'just-in-time', eliminación de paradas no programas y defectos de fabricación, son algunas de las aplicaciones de la IA.
Está en boca de todos y también, de una manera u otra, en la mayoría de plantas. Es la Inteligencia Artificial (IA), sistemas o aplicaciones que son capaces de tomar decisiones y ejecutar acciones, sin la necesidad de ser explícitamente programados para ello, en función de la recopilación de datos, el análisis del uso y otras observaciones. Pero cuál es el momento actual y hacía dónde nos llevará la IA.

"La IA ha existido desde principios de la década de 1950, y en la industria de procesos siempre ha existido el deseo de mejorar la productividad y obtener información a través del análisis de datos y el modelado. Es aquí donde el poder de las soluciones de IA puede ayudar", exponen Gabriela Serrano, Honeywell Connected Plant Sales Representative y Javier Casado, Regional Sales Manager Spain & Portugal, preguntados sobre si cabe hablar de la IA como algo “novedoso” en la industria.

"Las técnicas, en general, no son nuevas", coincide Zigor Lizuain, Digital Transformation Solutions Architect en Emerson Europe. "Lo que pretendemos con la IA es que las computadoras aprendan, es decir, sean capaces de desarrollar una tarea a partir de ejemplos en los que la tarea se muestra resuelta. Alguno de los campos que agrupa la IA, como la estadística o las matemáticas, están muy extendidas en la industria. Otros, como el Aprendizaje Máquina (machine learning) o Profundo (deep learning), quizá no lo estaban y se están generalizando". Entonces, ¿qué ha cambiado? "La accesibilidad a grandes volúmenes de datos, nuevos y/o existentes, y las arquitecturas para procesado y soporte a la toma de decisión casi en tiempo real que las habilitan", responde.

Cambia la tecnología pero también las personas. "La cantidad de profesionales con conocimiento de técnicas analíticas y una gran sensibilidad en niveles directivos sobre este asunto, lo que ha provocado que el uso de técnicas de IA se más potente y extenso", comenta Antonio Tortolero, Solution Architect Schneider Electric Iberia. "Se puede decir que han confluido los deseos en el negocio con las posibilidades técnicas lo que ha dado alas a su crecimiento".

No obstante, a pesar de que el sector industrial, y toda la economía en general, está empezando a ser consciente del inmenso potencial de la IA, falta mucho por hacer. José María de la Fuente, responsable sector Industria de Microsoft Ibérica, es menos optimista: "El sector todavía encuentra muchos obstáculos a la hora de apostar por este tipo de tecnología. Entre las principales barreras aparecen la falta de un modelo de negocio que les permita saber cuál es el retorno de la inversión; las dificultades en la gestión del cambio cultural dentro de la empresa, o la ausencia de un liderazgo claro y la escasez de talento cualificado".

Aplicaciones actuales

"Mantenimiento 'just-in-time', eliminación de paradas no programadas y defectos de fabricación. Son aplicaciones donde hay un conocimiento experto muy extenso y se persigue que las técnicas de Machine Learning ayudan a identificar los problemas no conocidos", explica Lizuain (Emerson). Eso sí, como le ocurre al ser humano, uno puede prever lo que ya conoce. "En función del conocimiento ya formalizado que tengamos del pasado, y la capacidad de emplear o integrar conocimiento experto normalizado, el poder responder a una pregunta predictiva será un reto de una complejidad diferente. La IA no es magia, y solo puede predecir las cosas después de que hayan ocurrido", recuerda.

Y día a día las aplicaciones que se usan en la operación de un sistema están ganando terreno, empujadas por el hecho de poder ejecutar algoritmos de análisis avanzado en el edge, tal y como reconoce Tortolero (Schneider): "Como es el caso de sensores virtuales que infieren datos que se usan en el proceso industrial, y que son o técnicamente o económicamente inviables de ser obtenidos con sensores físicos. Otros casos de uso habitual son los relacionados con la optimización de los procesos de fabricación. Ya sean los que buscan consignas de fabricación óptimas para maximizar la calidad y minimizar el coste de fabricación; como las que buscan anticiparse a los fallos y poder conocer las causas raíz de los mismos".

De la Fuente (Microsoft) coloca el límite "casi en la imaginación". Y comenta: "Esto está directamente relacionado con el concepto de Tech Intensity o intensidad tecnológica: nos encontramos en un momento en el que las organizaciones necesitan adoptar la tecnología más innovadora y construir capacidades digitales propias sobre ella e introducir disrupciones en el mercado que les permitan aprovechar las ventanas de oportunidad".

Soluciones futuras

Y mañana, ¿qué? Lizuain (Emerson) plantea tres momentos y tres tipos de soluciones: "A corto plazo, para predecir la aparición de fallos y provocar alertas para lanzar rutinas de mantenimiento y mejorar los flujos de trabajo, como herramienta para mejorar y capturar el conocimiento experto evitando su pérdida. A medio plazo, para agilizar la toma de decisiones de negocio para aprovechar oportunidades que el mercado pueda proponer, demandas más cortas/personalizadas, enfrentar el reto de la sostenibilidad y agregar datos de diferentes campos de aplicación para complementar los PLM. A más largo plazo, quizá extender este concepto a toda la cadena de suministro, incluido proveedores y clientes".

Antes de hacer su pronóstico, Tortolero (Schneider) advierte: "La historia está llena de previsiones de futuro que no se cumplen o que acaban siendo ridículas". Sin embargo, reconoce algunos casos de evolución de técnicas de inteligencia artificial en la industria. "Como los exoesqueletos que aprendan de movimientos de operarios y permitan conjugar la rapidez del reconocimiento del entorno por parte del humano y la fuerza y resistencia de las máquinas; los robots colaborativos que incluyan características de inteligencia artificial, por ejemplo, reconocimiento de entornos; los llamados 'Artificially Intelligent Robots'; el sistema de visión artificial para inspecciones de calidad de la producción; o los sistemas prescriptivos que den indicaciones a los operadores del sistema sobre configuraciones óptimas para buscar algún objetivo concreto", enumera. Y son solo algunos de los que vendrán: "Estoy seguro que no serán los únicos casos que afectarán al entorno industrial", augura.

El futuro que dibuja Microsoft va un paso más allá, para De la Fuente en los próximos años veremos cómo las tecnologías desarrolladas a raíz de la IA se harán más accesibles para todos los empleados, tal y como ocurrió con el PC o internet. "Esto implicará una transformación radical de los negocios, y un cambio cultural sin precedentes en la industria", subraya. ¿Ejemplos? "La IA sumada a la computación cuántica podría permitir a los científicos abordar algunos de los desafíos más difíciles del mundo, como los peligrosos efectos del cambio climático. Esto se debe en parte a que los ordenadores cuánticos potenciarán los algoritmos para realizar cálculos que ahora llevan días en cuestión de minutos, prever escenarios y ayudar a tomar mejores decisiones".

Sobre las personas también centran el discurso en Honeywell: "La industria de procesos se enfrenta a un momento de cambios importantes a nivel demográfico, el personal con más experiencia y conocimientos se retirará de la industria a un ritmo significativo durante los próximos años. Son esos conocimientos los que han operado y optimizado las instalaciones en todo el mundo, por lo que capturando esa experiencia y combinándola con el poder que la tecnología nos brinda hoy en día, nos situamos en un lugar privilegiado para la aplicación de IA en la industria de procesos. La clave para todos estos casos de uso es tener una fuerza laboral con un conjunto de habilidades digitales para poder utilizar y aprovechar estas tecnologías aún más".

Gabriela Serrano y Javier Casado también enumeran la habilidades y recursos que son necesarios para poder desarrollar de forma exitosa proyectos y aplicaciones. "Ingenieros de procesos y automatización, poseen los datos de proceso y el conocimiento de automatización; científicos de datos, que aportan conocimientos de análisis avanzados; ingenieros de TI y datos, que comprenden la infraestructura de TI; y expertos en creación de IA, que poseen los métodos y proporcionan conocimientos de las tecnologías de IA.

¿Qué tipo de IA incorporan sus productos orientados exclusivamente al desarrollo de aplicaciones en plantas industriales?

"Con el tipo de usos buscados de forma genérica, entre otras, las técnicas de AI que deben incorporar los sistemas están relacionadas con la detección de anomalías, forecasting o previsiones y la detección de patrones", explica Tortolero. "El uso y la combinación de las mismas para lograr el objetivo forma parte del conocimiento de las empresas desarrolladoras de las propias técnicas de análisis, de las técnicas IT y del propio conocimiento del negocio donde aplica el análisis, para que puedan ser desplegadas de forma correcta en un entorno industrial". Schneider Electric utiliza este tipo de técnicas dentro de sistemas como EcoStruxure Asset Advisor, AVEVA Predictive Asset Analytics, además de ofrecer funcionalidad de este tipo de forma genérica para ser usada por terceras partes en Schneider Electric Exchange dentro de la categoría 'Develop'.

En Microsoft la gran apuesta es Dynamics 365, "la plataforma cloud basada en IA que elimina los silos tradicionales existentes entre el ERP y el CRM, desglosándose en múltiples aplicaciones de negocio", tal y como describe De la Fuente. "Todas ellas permiten conectar los procesos de producción, la atención y servicio al cliente y los de servicios de campo, o gestionar el talento de la organización. Además, con la ventaja de la plena integración con las herramientas de productividad que los empleados ya están acostumbrados a usar. Asimismo, hace posible incluso predecir tendencias en función de multitud de variables, incluidas la meteorología o las conclusiones obtenidas de la escucha social. Esto permite adelantarse a los acontecimientos y, por ejemplo, ajustar el stock para para no perder oportunidades", añade.

"Principalmente estadística, matemática y machine learning", responde Lizuain (Emerson). "Nuestros productos, como tecnología y demanda de clientes, están en continua adaptación. Gemelo digital, para el diseño básico y optimización de proceso hibridando modelos teóricos y basados en datos, planificación en tiempo real agregando datos de proceso y salud de los activos..., son algunos ejemplos". Pero lanza una advertencia: "Corremos el riesgo de, teniendo un martillo en la mano, ver clavos por todas partes. Muchas de las soluciones con reglas, estadística o matemáticas solucionan un elevado porcentaje de los retos de nuestros clientes. Por eso nos centramos en entender cuáles son sus desafíos y necesidades para elegir la solución más efectiva. Estamos corriendo el riesgo de dejarnos llevar por tendencias que desinflen las expectativas sobre la IA en cuanto a su eficiencia".


Este artículo aparece publicado en el nº 517 de Automática e Instrumentación, pág. 55-57.
Más noticias sobre inteligencia artificial
COMPARTIR
OPINE SOBRE ESTA NOTICIA
* Campos obligatorios
Automática e Instrumentación le anima a comentar los artículos publicados al tiempo que le solicita hacerlo con ánimo constructivo y desde el sentido común, por lo que se reserva el derecho de no publicar los comentarios que considere inapropiados, que contengan insultos y/o difamaciones.
Actualidad
El evento incluyó muchas de las intervenciones que no pudieron realizarse en la segunda jornada del Congreso Aslan2020 debido al Covid-19.
El evento incluyó muchas de las intervenciones que no pudieron realizarse en la segunda jornada del Congreso Aslan2020 debido al Covid-19.
La Asociación @aslan ofreció, del 19 al 21 de mayo un multi-webinar con soluciones de sus empresas asociadas para...
 La fijación mecánica y el conexionado de barras se realiza en un solo paso y sin utilizar herramientas.
La fijación mecánica y el conexionado de barras se realiza en un solo paso y sin utilizar herramientas.Rittal.
Rittal ofrece ahora los nuevos controladores de motor para el sistema de distribución de corriente RiLine Compact, una...
La app Assessment Hub ya está disponible en Apple App Store y en Google Play Store.
La app Assessment Hub ya está disponible en Apple App Store y en Google Play Store.Rockwell Automation.
Rockwell Automation ha lanzado una nueva app que ayudará a los directores de operaciones, responsables de planta y...
Gracias al software SIMIT de Siemens se pueden simular desde los dispositivos de campo hasta el proceso de una planta en tiempo real.
Gracias al software SIMIT de Siemens se pueden simular desde los dispositivos de campo hasta el proceso de una planta en tiempo real.
Siemens ha colaborado con Acciona para la creación de un Gemelo Digital con el que mejorar la gestión de sus plantas de...
El Smart Badge contribuye a incrementar el engagement.
El Smart Badge contribuye a incrementar el engagement.
MetalMadrid y Composites Spain están trabajando en exhaustivos protocolos sanitarios y planes de prevención para...
El nuevo espacio ocupa 240 metros cuadrados dentro de la sede de la compañía en Palautordera (Barcelona).
El nuevo espacio ocupa 240 metros cuadrados dentro de la sede de la compañía en Palautordera (Barcelona).Salicru.
La reciente ampliación del departamento de I+D+i en su sede Palautordera (Barcelona), ha permitido a Salicru potenciar...
Todas las variantes del DFPC tienen un diseño robusto y una larga vida útil.
Todas las variantes del DFPC tienen un diseño robusto y una larga vida útil.
El actuador lineal neumático de doble efecto DFPC es la última novedad de Festo. Está específicamente diseñado para...
Imagen de la Sagrada Familia, una obra Gaudí.
Imagen de la Sagrada Familia, una obra Gaudí.
Antonio Gaudí revolucionó la forma de entender la arquitectura. El significado de su obra no se percibe únicamente en...
Twitter
LinkedIn
Suscríbete a nuestro canal de YouTube
Revista Automática e Instrumentación
NÚMERO 519 // abril 2020
Acceso gratuito a la revista
Empresas destacadas
LA REVISTA Y EL BOLETÍN A UN SOLO CLIC
Boletín
Lea gratis la revista y reciba toda la actualidad del sector a través de nuestro boletín.

Esta web utiliza 'cookies' propias y de terceros para ofrecerte una mejor experiencia y servicio Más información
Versys Ediciones Técnicas © Copyright 2019 - automaticaeinstrumentacion.com | Todos los derechos reservados | Aviso Legal | Política de privacidad | Política de Cookies | Mapa web