06/04/2020
Ignacio Álvarez Vargas, director técnico de Digitalización de FA en Siemens España
Máquinas naturalmente flexibles
Inteligencia artificial: El próximo horizonte digital
Mediante algoritmos entrenados, los datos de una imagen se comparan con los estándares de calidad definidos, eliminando errores inesperados. Mediante algoritmos entrenados, los datos de una imagen se comparan con los estándares de calidad definidos, eliminando errores inesperados.// FOTO: Siemens.

Durante varias décadas, la inteligencia artificial (IA) había seguido siendo un concepto de ciencia ficción tal y como lo imaginaban los libros de Isaac Asimov. Gracias a estas numerosas obras de ciencia ficción, se inició una conversación alrededor de la IA y lo que podría significar integrar esta tecnología en escenarios del mundo real. Hoy en día, la IA es capaz de hacer de estas ideas una realidad, a pesar de que todavía está en una etapa naciente.

Lo que solían ser conceptos innovadores son ahora mega tendencias de futuro. Independientemente de todo el bombo alrededor de la IA, es solo ahora cuando estamos empezando a ver sus capacidades. La IA es una combinación de tecnologías inteligentes avanzadas que permite a las máquinas realizar tareas que tradicionalmente solo eran posibles utilizando la inteligencia humana. A medida que esta tecnología avance rápida y exponencialmente, no habrá límite a lo que la IA pueda lograr en multitud de sectores y funciones industriales.

La IA ha sido el foco de la investigación durante más de 30 años. Durante este tiempo, se han realizado importantes avances en esta área de la tecnología: por ejemplo, hardware y software más potentes y una mejor potencia informática y transmisión de datos. El uso de inteligencia artificial crea oportunidades completamente nuevas para una producción flexible y eficiente, incluso cuando se trata de productos complejos y cada vez más personalizados en pequeñas tiradas por lotes. Las consecuencias serán significativas, como muestra un estudio de Roland Berger: para 2035, los sistemas inteligentes en red digital y las cadenas de procesos podrían representar un crecimiento adicional de aproximadamente 420.000 millones de euros solo en Europa occidental. Según un estudio de PwC, la IA también puede contribuir a 15,7 billones de dólares a la economía mundial en 2030.

Las primeras aplicaciones reales de la inteligencia artificial ya están encontrando un lugar en las actividades industriales regulares, incluyendo el reconocimiento de lenguaje para realizar tareas básicas, documentar el entorno usando cámaras, rayos láser o rayos X, y proporcionar asistentes personales en logística. Según el estudio de PwC, un total de 62 % de las grandes empresas ya estaban utilizando la tecnología de IA en 2018.

Por todo lo expuesto anteriormente, la IA ya está a punto de convertirse en una palanca crucial para intensificar la productividad operativa y las empresas industriales ya han tomado nota. A medida que los sistemas de automatización convencionales como los PLC, DCS y Scada comienzan a integrarse con la IA, una nueva ola de digitalización está empezando a dar forma al futuro de la automatización industrial inteligente. La IA permite a las máquinas realizar tareas que tradicionalmente solo eran alcanzables por la inteligencia humana. Mediante la implementación de la combinación correcta de tecnologías de IA, los fabricantes pueden aumentar la eficiencia, mejorar la flexibilidad, acelerar la operación e incluso ser capaces de optimizar las operaciones.

Dondequiera que la industria pruebe la calidad del producto o de un proceso, supervise el estado de una máquina o transporte objetos, estas tareas pueden realizarse mediante módulos de control con capacidades de IA. Además, los clientes pueden diseñar sus propias redes neuronales y crear aplicaciones de IA que harán que sus procesos sean más eficientes.

Las redes neuronales son una tecnología que imita el cerebro humano en el que se es capaz de reconocer patrones complejos. Con esto en mente, al agregar IA a través de redes neuronales a los programas de control tradicionales, que fueron diseñados para ejecutar una tarea establecida, las capacidades del sistema se pueden ampliar para cambiar en función de los parámetros del producto o proceso. En resumen: las máquinas se vuelven naturalmente flexibles.

La IA, por tanto, desempeñará un papel clave en la reducción del esfuerzo de programación e ingeniería necesario para crear soluciones de automatización. También está haciendo que la lógica de control sea más ágil y los procesos de producción sean más flexibles y precisos, especialmente en la industria. Por ejemplo, los algoritmos de aprendizaje automático ayudan a los sistemas que realizan controles de calidad visual en plantas de producción o sistemas robóticos guiados por imágenes a reaccionar con mucha más flexibilidad ante situaciones inesperadas y a defectos de calidad porque pueden responder automáticamente durante ejecución. Como resultado, funcionan de manera mucho más eficiente, porque el conocimiento experto, por ejemplo, con respecto al color, la consistencia o la calidad de un producto o proceso, se puede transmitir a la automatización.

Los típicos ejemplos a nivel industrial que se están implementando a día de hoy mayormente se basan en tres aspectos:

Reconocimiento inteligente de objetos de cualquier pieza de trabajo

Se utilizan las capacidades de las redes neuronales para reconocer patrones complejos. Los datos de entrada se procesan con la ayuda de los conocimientos adquiridos a través del aprendizaje automático. Esto significa que incluso componentes y piezas desconocidas pueden ser reconocidos en cualquier ubicación o posición.

Se reduce el tiempo de ingeniería al eliminar el lento proceso de aprendizaje de los objetos individuales y también aumenta la productividad al evitar el desperdicio.

Comprobación de la calidad visual de los productos

El procesamiento de datos de imagen en la red neuronal permite una detección visual fiable de defectos de calidad. Utilizando algoritmos entrenados, los datos de imagen se comparan con características de calidad predefinidas y extremadamente complejas. Esto elimina errores inesperados en el proceso en curso y garantiza una calidad constante del producto.

Las estaciones de control de calidad al final de las líneas de producción crean normalmente un cuello de botella en muchos procesos de producción, ya que comprobar la calidad del producto a menudo consume mucho tiempo.

Además, la comprobación de la calidad de los productos más complejos a menudo ha necesitado ser realizado manualmente. Con estos sistemas, los operadores ahora pueden comprobar la calidad de los productos cada vez más complejos de forma automática, lo que también significa más rápido, más rentable y de forma más fiable.

Comprobación de calidad mediante sensores y datos de producción

En muchas secuencias de producción, la visión general y la evaluación de los datos de producción, como la energía, la temperatura, la presión y la superficie, proporcionan una base fiable para la detección temprana de defectos de calidad.

Siemens está trabajando en distintos tipos de soluciones integradas tanto en equipos de automatización directamente, como en Edge o incluso en Cloud. De hecho, en el primer caso de soluciones integradas, hemos desarrollado un módulo que permite a los clientes ejecutar su propia red neuronal en un control industrial y producir aplicaciones de IA que automatizarán sus procesos y los harán más eficientes.

También con respecto al segundo y tercer caso Edge y/o Cloud, tenemos una aplicación concreta implementada en nuestra fábrica de Amberg, en la cual teníamos un cuello de botella en una línea de fabricación, ya que el elemento de inspección al final de la línea retrasaba la salida del material que se estaba fabricando en esa línea. A través de un sistema de inteligencia artificial que montamos tanto a nivel de Cloud donde entrenábamos la red neuronal, como a nivel de Edge, donde se toman las decisiones, conseguimos una reducción del 30% en los esfuerzos de test y como consecuencia no tener que desdoblar el final de la línea con dos equipos de inspección lo cual nos hubiera supuesto costes por un valor superior a medio millón de euros, eso sí, manteniendo el 100% la calidad del producto fabricado.

Ignacio Álvarez Vargas
Director Técnico de Digitalización de FA en Siemens España


Este artículo aparece publicado en el nº 517 de Automática e Instrumentación, pág. 58-60.
Más noticias sobre Siemens, inteligencia artificial
COMPARTIR
OPINE SOBRE ESTA NOTICIA
* Campos obligatorios
Automática e Instrumentación le anima a comentar los artículos publicados al tiempo que le solicita hacerlo con ánimo constructivo y desde el sentido común, por lo que se reserva el derecho de no publicar los comentarios que considere inapropiados, que contengan insultos y/o difamaciones.
Twitter
LinkedIn
Suscríbete a nuestro canal de YouTube
Revista Automática e Instrumentación
NÚMERO 524 // Nov/Dic 2020
Consulte el último número de la revista
  • Lo más visto
  • Lo más comentado
Empresas destacadas
LA REVISTA Y EL BOLETÍN A UN SOLO CLIC
Boletín
Lea gratis la revista y reciba toda la actualidad del sector a través de nuestro boletín.

Actualidad
El centro ubicado en Landaben permitirá desarrollar redes industriales y formar al personal en su mantenimiento.
El centro ubicado en Landaben permitirá desarrollar redes industriales y formar al personal en su mantenimiento.Siemens
El Grupo Volkswagen y Siemens han creado un laboratorio destinado a la conectividad digital en Landaben (Navarra). Este...
Un momento del evento organizado por Executive Forum.
Un momento del evento organizado por Executive Forum.Executive Forum
La secretaria de Estado de Digitalización e Inteligencia Artificial, Carme Artigas, ha defendido el papel que desempeña...
Según el informe publicado por ARC Advisory Group un software de control de automatización portátil podría reducir los tiempos de ingeniería un 68%.
Según el informe publicado por ARC Advisory Group un software de control de automatización portátil podría reducir los tiempos de ingeniería un 68%.Schneider Electric
Un reciente informe, publicado por la firma de estudios de mercado ARC Advisory Group (ARC), calcula que adoptar la...
El webinar tendrá lugar en horario de tarde.
El webinar tendrá lugar en horario de tarde.
Todo el mundo entiende qué funciones desempeñan y cómo funcionan las válvulas de bola, de retención, de alivio u otras...
T-Systems  ha desarrollado metodologías de procesos propias para ayudar en el despliegue de proyectos de RPA y modernización de aplicaciones (AMM).
T-Systems ha desarrollado metodologías de procesos propias para ayudar en el despliegue de proyectos de RPA y modernización de aplicaciones (AMM).T-Systems
La transformación digital plantea numerosos retos a las empresas españolas, entre ellas, elegir las tecnologías más...
Eplan Partner Network (EPN) reúne los conocimientos de los socios colaboradores de todo el mundo con objetivos de desarrollo definidos.
Eplan Partner Network (EPN) reúne los conocimientos de los socios colaboradores de todo el mundo con objetivos de desarrollo definidos.Eplan
Eplan, el proveedor de soluciones de ingeniería, inició a finales de 2020 la Eplan Partner Network (EPN), una...
A través de un nuevo acuerdo estratégico, los ingenieros de Navantia utilizarán las soluciones de Ansys para apoyar el Sistema Integrado de Gestión Empresarial del Astillero 4.0.
A través de un nuevo acuerdo estratégico, los ingenieros de Navantia utilizarán las soluciones de Ansys para apoyar el Sistema Integrado de Gestión Empresarial del Astillero 4.0.Ansys
Navantia y Ansys están reduciendo sustancialmente el tiempo de diseño y también aumentando el rendimiento de los buques...
Jorge Chavero.
Jorge Chavero.
De todos los seres vivos el ser humano es el único que puede evolucionar durante su existencia como individuo y no como...
Esta web utiliza 'cookies' propias y de terceros para ofrecerte una mejor experiencia y servicio Más información
Versys Ediciones Técnicas © Copyright 2020 - automaticaeinstrumentacion.com | Todos los derechos reservados | Aviso Legal | Política de privacidad | Política de Cookies | Mapa web